Inproceedings3390: Unterschied zwischen den Versionen

Aus International Center for Computational Logic
Wechseln zu:Navigation, Suche
Alex Ivliev (Diskussion | Beiträge)
(Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorVorname=Alex |ErsterAutorNachname=Ivliev |FurtherAuthors=Lukas Gerlach; Simon Meusel; Jakob Steinberg; Markus Krötzsch }} {{Inproceedings |Referiert=0 |Title=Nemo: Your Friendly and Versatile Rule Reasoning Toolkit |To appear=1 |Year=2024 |Booktitle=Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning (KR 2024) |Publisher=International Joint Conferences on Artifici…“)
 
Markus Krötzsch (Diskussion | Beiträge)
Keine Bearbeitungszusammenfassung
 
(5 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 5: Zeile 5:
}}
}}
{{Inproceedings
{{Inproceedings
|Referiert=0
|Referiert=1
|Title=Nemo: Your Friendly and Versatile Rule Reasoning Toolkit
|Title=Nemo: Your Friendly and Versatile Rule Reasoning Toolkit
|To appear=1
|To appear=0
|Year=2024
|Year=2024
|Booktitle=Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning (KR 2024)
|Booktitle=Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning (KR 2024)
|Publisher=International Joint Conferences on Artificial Intelligence Organization
|Pages=743-754
|Series=Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning
|Publisher=IJCAI Organization
|Volume=21
|Editor=Pierre Marquis,Magdalena Ortiz,Maurice Pagnucco
}}
}}
{{Publikation Tool
{{Publikation Tool
Zeile 20: Zeile 20:
|Abstract=We present Nemo, a toolkit for rule-based reasoning and data processing that emphasises robustness and ease of use. Nemo’s core is a scalable and efficient main-memory reasoner that supports an expressive extension of Datalog with support for data types, existential rules, aggregates, and (stratified) negation. Built around this core is a versatile system of libraries and applications for interfacing with several data formats and programming languages, use as a web application, and IDE integration. In this system description, we present this toolkit and discuss relevant application areas in rule-based knowledge representation, knowledge graph processing, and reasoner prototyping. Our evaluation on a range of tasks from these areas demonstrates Nemo’s robust performance in comparison to state-of-the-art rule engines.
|Abstract=We present Nemo, a toolkit for rule-based reasoning and data processing that emphasises robustness and ease of use. Nemo’s core is a scalable and efficient main-memory reasoner that supports an expressive extension of Datalog with support for data types, existential rules, aggregates, and (stratified) negation. Built around this core is a versatile system of libraries and applications for interfacing with several data formats and programming languages, use as a web application, and IDE integration. In this system description, we present this toolkit and discuss relevant application areas in rule-based knowledge representation, knowledge graph processing, and reasoner prototyping. Our evaluation on a range of tasks from these areas demonstrates Nemo’s robust performance in comparison to state-of-the-art rule engines.
|Download=KR-2024-CR.pdf
|Download=KR-2024-CR.pdf
|Slides=Datalog20 Ivliev Slides.pdf
|DOI Name=https://doi.org/10.24963/kr.2024/70
|Projekt=Cfaed, CPEC, InnoSale, SECAI, ScaDS.AI, Wikidata
|Forschungsgruppe=Wissensbasierte Systeme
|Forschungsgruppe=Wissensbasierte Systeme
}}
{{Forschungsgebiet Auswahl
|Forschungsgebiet=Existenzielle Regeln
}}
{{Forschungsgebiet Auswahl
|Forschungsgebiet=Regelbasiertes Schließen
}}
{{Forschungsgebiet Auswahl
|Forschungsgebiet=Wissensrepräsentation und logisches Schließen
}}
{{Forschungsgebiet Auswahl
|Forschungsgebiet=Semantische Technologien
}}
}}

Aktuelle Version vom 21. Januar 2025, 08:59 Uhr

Toggle side column

Nemo: Your Friendly and Versatile Rule Reasoning Toolkit

Alex IvlievAlex Ivliev,  Lukas GerlachLukas Gerlach,  Simon MeuselSimon Meusel,  Jakob SteinbergJakob Steinberg,  Markus KrötzschMarkus Krötzsch
Alex Ivliev, Lukas Gerlach, Simon Meusel, Jakob Steinberg, Markus Krötzsch
Nemo: Your Friendly and Versatile Rule Reasoning Toolkit
In Pierre Marquis,Magdalena Ortiz,Maurice Pagnucco, eds., Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning (KR 2024), 743-754, 2024. IJCAI Organization
  • KurzfassungAbstract
    We present Nemo, a toolkit for rule-based reasoning and data processing that emphasises robustness and ease of use. Nemo’s core is a scalable and efficient main-memory reasoner that supports an expressive extension of Datalog with support for data types, existential rules, aggregates, and (stratified) negation. Built around this core is a versatile system of libraries and applications for interfacing with several data formats and programming languages, use as a web application, and IDE integration. In this system description, we present this toolkit and discuss relevant application areas in rule-based knowledge representation, knowledge graph processing, and reasoner prototyping. Our evaluation on a range of tasks from these areas demonstrates Nemo’s robust performance in comparison to state-of-the-art rule engines.
  • Projekt:Project: CfaedCPECInnoSaleSECAIScaDS.AIWikidata
  • Verknüpfte Tools:Related Tools: Nemo
  • Forschungsgruppe:Research Group: Wissensbasierte SystemeKnowledge-Based Systems
@inproceedings{IGMSK2024,
  author    = {Alex Ivliev and Lukas Gerlach and Simon Meusel and Jakob
               Steinberg and Markus Kr{\"{o}}tzsch},
  title     = {Nemo: Your Friendly and Versatile Rule Reasoning Toolkit},
  editor    = {Pierre Marquis and Magdalena Ortiz and Maurice Pagnucco},
  booktitle = {Proceedings of the 21st International Conference on Principles of
               Knowledge Representation and Reasoning (KR 2024)},
  publisher = {IJCAI Organization},
  year      = {2024},
  pages     = {743-754},
  doi       = {https://doi.org/10.24963/kr.2024/70}
}